A fast approach for overcomplete sparse decomposition based on smoothed l norm

نویسندگان

  • Hosein Mohimani
  • Massoud Babaie-Zadeh
چکیده

In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdetermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real field codes. Contrary to previous methods, which usually solve this problem by minimizing the l norm using Linear Programming (LP) techniques, our algorithm tries to directly minimize the l norm. It is experimentally shown that the proposed algorithm is about two to three orders of magnitude faster than the state-of-the-art interior-point LP solvers, while providing the same (or better) accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed Norm

In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdetermined sparse component analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real field codes. Cont...

متن کامل

A fast approach for overcomplete sparse decomposition based on smoothed ` 0 norm

In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdetermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real £eld codes. Contr...

متن کامل

A fast approach for overcomplete sparse decomposition based on smoothed L0 norm

In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdetermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real field codes. Cont...

متن کامل

Sparse Recovery using Smoothed $\ell^0$ (SL0): Convergence Analysis

Finding the sparse solution of an underdetermined system of linear equations has many applications, especially, it is used in Compressed Sensing (CS), Sparse Component Analysis (SCA), and sparse decomposition of signals on overcomplete dictionaries. We have recently proposed a fast algorithm, called Smoothed l (SL0), for this task. Contrary to many other sparse recovery algorithms, SL0 is not b...

متن کامل

Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar

Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008